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Introduction 

In  t h i s  p a p e r  a m e t h o d  f o r  c o m p u t i n g  the  F r e s n e l  i n t e g r a l s  o v e r  t he  
w h o l e  r a n g e  f r o m  0 to  ~ w i t h  a n  a c c u r a c y  of  t h i r t e e n  d e c i m a l  p l a c e s  i s  
p r e s e n t e d .  In  s e c t i o n  1 a p p r o x i m a t i o n s  to  t h e  i n t e g r a l s  a r e  d e r i v e d  in  t h e  
f o r m  of  f i n i t e  s e r i e s  o f  C h e b y s h e v  p o l y n o m i a l s ,  v a l i d  in  t h e  s u b r a n g e s  
0 =<_ x <-__ 5 a n d  x -> 5. T h e  c o e f f i c i e n t s  in  t h e s e  a p p r o x i m a t i o n s  h a v e  b e e n  
c o m p u t e d  w i t h  t he  a i d  of  a m e t h o d  g i v e n  b y  C l e n s h a w  [ 1 ] .  T h i s  m e t h o d  
l e a d s  to  a d i f f e r e n c e  e q u a t i o n  f r o m  w h i c h  the  c o e f f i c i e n t s  a r e  to  b e  c a l -  
c u l a t e d .  S e c t i o n  2 c o n t a i n s  a n  i n v e s t i g a t i o n  i n t o  t h e  e r r o r s  o f  t h e  p r e s e n t  
a p p r o x i m a t i o n s .  In  t h e  s e c t i o n s  3 a n d  4 t h e  t h i r d - o r d e r  d i f f e r e n c e  e q u a t i o n  
w h i c h  o c c u r s  i n  t h e  c a s e  x ->_ 5 h a s  b e e n  i n v e s t i g a t e d .  In  p a r t i c u l a r  i t  i s  
s h o w n  t h a t  t h e  s o l u t i o n  w h i c h  w a s  o b t a i n e d  in  s e c t i o n  1 r e a l l y  c o r r e s p o n d s  
to  t h e  C h e b y s h e v  c o e f f i c i e n t s  of  the  F r e s n e l  i n t e g r a l s .  

1. Derivation of  the approximations 

F i r s t  w e  q u o t e  t h e  f o l l o w i n g  d e f i n i t i o n s ,  n o t a t i o n s  a n d  p r o p e r t i e s  r e l a t e d  
to  t he  s h i f t e d  C h e b y s h e v  p o l y n o m i a l s  f r o m  C l e n s h a w  [ 1 ] ,  w i t h  s o m e  m o d i f i -  
c a t i o n s .  

E v e r y  f u n c t i o n  f(x) w h i c h i s  c o n t i n u o u s  a n d  of  b o u n d e d  v a r i a t i o n  in  0 <-- x <-- 1 
c a n  b e  e x p a n d e d  in  a u n i f o r m l y  c o n v e r g e n t  s e r i e s  

f (x )  = t 5 a  0 + a l T ' l ( X )  + a 2 T ~ ' ( x  ) + . . .  = ~ '  a~T~"(x) (1.1) 
r=0 

w h e r e  T~:~(x) s t a n d s  f o r  t h e  s h i f t e d  r th C h e b y s h e v  p o l y n o m i a l  d e f i n e d  b y  

T~:"(x) = c o s  r o ;  2x - 1 = c o s  ~ f o r  0 -<_ x 5 1 .  ( 1 . 2 )  

The prime on the summation symbol in (i. i) and elsewhere in this paper 
denotes that the term with suffix r = 0 is to be halved. 

The orthogonal property of integration of the Chebyshev polynomials gives 
rise to the following representation of the coefficient a t in (I. I), 

2 ~ T~:"(x) 
a r : ~- f f (x)  dx  ( r  = 0 , 1 , 2  . . . .  ), ( 1 . 3 )  

o 

t h e  s o - c a l l e d  r th F o u r i e r - C h e b y s h e v  c o e f f i c i e n t  o f  t h e  f u n c t i o n  f (x ) .  
T h e  r th F o u r i e r - C h e b y s h e v  c o e f f i c i e n t  of  t h e  S th d e r i v a t i v e ,  f(s) (x) ,  of  

a - f u n c t i o n  f(x)  i s  d e n o t e d  b y  a~ s) . B y  m e a n s  of  a n  i n t e g r a t i o n  b y  p a r t s ,  
one  c a n  d e r i v e  t he  r e l a t i o n  

(s+l) (s+l) 
4 r a  s) = a l r_ l l  - a r+l 

u n d e r  t he  c o n d i t i o n s  

( 1 . 4 )  

*) Dept. of Mathematics of the University of Groningen, the Netherlands. 
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f(s) (x) = o (x-�89 a s  x ~ O, 

f(s) (x) = o ( ( i - x ) ' � 8 9  a s  x---> i. 

Let the r th Fourier-Chebyshev coefficient of the function xPf(S)(x) be 
denoted by Cr(xPf(s)), then one can easily derive that 

t-(s) aCS) + a Cs) ) 

and hence 

Cr(xPf(S)) = 2 - 2 P ~  ( 2 7 )  a ( s ) j = O  [r-p+j, (p = 0 , 1 , 2 , . . . ) ,  

( 1 . 5 )  

(1.6) 

under no other conditions than the existence of the occurring coefficients. 

In this paper the Fresnel integrals are defined by 

x cos t 
c (x) = / - -  

o k/2rt 
d r ,  

Xsin t 
s (x) = ] - -  

o k/27r t 
dr .  

(1o7) 

Approximations in the form of finite Chebyshev series expansions will 
be derived for the following function, 

x e-it 

(x) = ] - -  d t  = C (x) - iS (x) . ( 1 . 8 )  f 
0 

T w o  d i f f e r e n t  e x p a n s i o n s  w i l l  be  o b t a i n e d ,  v a l i d  f o r  the  r a n g e s  0<x_<5 and  
x>__5, respectively. 

At first we construct the approximation for 0<x<5. If we expand the 
function e "it , a term by term integration of (1.8) leads to the following 
expansion for the function f(x), 

f(x) =V  x ~ (-ix)r . (1.9) 
2~r r--O r'. ( r +  t )  

Now we introduce a function u(x) defined by 

f(x) = k/~u (x) . (1.10) 

Inspection of (i. 9) shows that the function u(x) is more suited to approxi- 
mation b y  p o l y n o m i a l s .  
D i f f e r e n t i a t i o n  of  ( 1 . 1 0 )  and  s u b s e q u e n t  s u b s t i t u t i o n  of x=5z  y i e l d  the  f o l -  
l o w i n g  d i f f e r e n t i a l  e q u a t i o n  f o r  u a s  a f u n c t i o n  of z,  

z~-f+~du u =e-Si z (0<z<l)._ _ (1.11) 

The right-hand side of (i.ii) can be expanded in a Chebyshev series, 
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e-  Z-e . - - = e 2 . 2 E' (-i) r Jr( )Tr (z), 
r=0 

39 

(1.12} 

where Jr denotes the Bessel function of the first kind. Relation (i. 12) can 
easily be deduced from the expansion 

eiaC~ = 2E' it Jr (a) cos r 9, ([2], form. 7. 2 (27)). 
r=0 

Hence we obtain the following relation between Fourier-Chebyshev coef- 
ficients, 

i Cr(U) = 2 e-5i 5 Cr(zu') +5 (-i) r Jr( ) (r=0,1,2 .... ). (1.13) 

When we use (1.5), the relation (1.13) becomes 

" + ' + 2 a r : 8 e -5i C-i) r Jr(5). alr_l I + 2 a r at+ 1 (i. 14) 

The latter relation combined with (1.4) will be used for the computation 
of the coefficients at of the truncated Chebyshev series expansions for u(z). 
We eliminate the coefficients a' r by first subtracting the relation (I. 14) with 
r replaced by r+l from the original relation (i. 14). This leads to 

r T -- # -- t ~ -- ~ 9 9 al,_~l+a , a,+~ a,+2 2a,  2a,+~ 8e '~( - i ) * {J , (  )+ iJ ,+~( ) ] . (1 .15)  

Using (i. 4) we can eliminate the coefficients a' r and we obtain the following 
difference equation for the coefficients a r, 

__5i r 
4e 2 (-i) {Jr(~) + i Jr+l ( ~ ) ~  

a r + at+ 1 = (i.16) 
2r+l 

Since the Chebyshev series formed with the coefficients ar should con- 
verge, equation (i. 16) must be solved with the boundary condition 

lira a r = 0 . (i. 17) 

If the calculation is performed in 14 decimal places, it appears that the 
right-hand side of equation (I. 16) vanishes in this accuracy for r>lS. This 
means that all coefficients ar with r>18 can be taken as zero. Then the 
coefficients for r<=N=17 can be calculated from equation (i. 16) directly. 

The stability of the procedure is satisfactory since an error in one of 
the coefficients ar is transferred with equal absolute value to all coeffi- 
cients with smaller r. However, the solution obtained increases rapidly 
with smaller r. 

Secondly we construct the polynomial approximation for x>5. 
derived, that 

e 1 -i 
f@o) = [ dt =-- 

o" ~ 2 

By means of repeated integration by parts, we derive 

It can be 
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" e "4t - i e  -i t  F(�89 + r )  

(1.18) 

The asymptotic approximation (i. 18) shows that the function f(x) is not suited 
to approximation by polynomials in x -I. Therefore, we introduce a function 
u(x), defined by 

l-i 
f(x) -- 

2 

or 

e -ix 

V~x 

e - i t  

eiX AKx u(x) = J 
V~ 

u (x) 

d t  . ( 1 . 1 9 )  

Differentiation of (1.19)and subsequent substitution of x=5/z yield the fol- 
lowing differential equation for u as a function of z, 

z 2 du i h~- + u (~ z + 5 i) = 5 (0 <__ z <__ I). (1.20) 

From (I. 20) we obtain the following relations between Fourier-Chebyshev 
coefficients, 

Cr(z2u ') + ~ C r (zu) + 5 i C r (u) = 0 (r--l, 2 .... ), (i. 21) 

LCo(Z2U') + �89 Co(zU) + 5 i Co(u) 1o (r=o). 

When we use (i.6), the relations (1.21) become 

a]r_2 i + 4 a' + 6 a' r + 4 a' + a' + 2 ar_ I+ 4 + 80 ia = 0 ' r-i [+i r+2 at+ 2 a r+l r 

(r=l, 2 .... ), (1.22) 
! 

6 a~ +8 a I + 2a 2 +4ai+ 4 a0+ 80i a 0:160 (r=0). 

We subtract the relations (1.22) with r replaced by r+l from the original 
relations (1.22) and use (1.4), in order to eliminate the coefficients a~. 
The result is 

~ (2r-l) at_ / + (6r+i+40i) a r + (6r+ 5-40i) ar+l+(2r+3)ar+2 = 0 

(r=l, 2... ), (i. 23) 

(i +40i) a0+(4-40i)a I + 3 a 2 = 80 (r=0). 

Equation (1.23)for r>l is a third-order difference equation. Two boun- 
dary conditions are available, viz. equation (1.23)for r=0 and condition 
(1.17). This, however, is not sufficient to determine the solution uniquely. 
One solution has been obtained in the following way. 

For a sufficiently large integer M we assume 

a M = i, aM+ 1 -- aM+ 2 = ... = 0. 

Then the coefficients a r for r<M can be solved from equation (1.23) for 
r=M, M-I ..... I. Equation (1.23) for r=0 acts as a normalizing relation, 
by means of which final values for all coefficients can be obtained. It was 
found that for increasing M the values of the coefficients ar converge. 
For M~I9 these coefficients are obtained with an accuracy of fourteen 
decimal places. It appears that a19 vanishes in this accuracy so that only 
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the coefficients ar(r=0ol ..... N) with N=I8 are of importance. 
In section 3 and 4 an investigation of the solutions of equation (i. 23) 

has been carried out. In particular, it is shown there that the coefficients 
obtained above correspond to the coefficients of the Chebyshev series ex- 
pansion of the function u(x) as defined by relation (I.19). 

Thus we have obtained the following approximations, 

and 

f (x)  (}) for <5 V ~ - ~  r=o a r T~ valid (I. 24) 

f (x) i-i e - i x  ~ (5 
E' a r T[ ) valid for x>5. (i. 25) 

2 ~ / r x  r=O = 

Actually, the coefficients a r in (1,24) and (i. 25) have been multiplied by 

a n d  1X/ - i -~ '  r e s p e c t i v e I y ,  i n  o r d e r  t o  o b t a i n  t h e  a p p r o x i m a t i o n s  

f(x) E' (alr+ia2r) . x T r (-~) for 0<=x<5 
r=0 

( 1 . 2 6 )  

and 

l - i  -ix / 5  ~, ( a 3 r + i  5 x ~  f (x) ~ ~ - e ~/~ a4r ) Tt* ( ) for 5. 
r-0 

( 1 . 2 7 )  

The computations of the coefficients akr in the approximations (1.26) 
and (I. 27)have been performed on the digital computer ZEBRA operating 
with numbers of 16 decimal digits (the so-called 1 �89 length numbers). In 
this paper the computed coefficients are given in 14 decimal places in 
Table i. The inaccuracy of these coefficients will be one unit of the last 
decimal at most. 

TABLB i 

4 
5 
6 
7 
8 
9 

i0 
ii 
12 
13 
14 
15 
16 
17 

air  

+ 2.0317861 
8319294 

+ 0530351 
§ 1094828 

0132731 
0055349 

+ 0006511 
+ 0001503 

161 
25 

+ 2 
+ 

§ 

+ 

9253011 
4359172 
6304029 
9102595 
4036389 
7821362 
1454310 
O914539 
0750990 
5346638 
4711976 
2970767 
260422 
25152 
2009 
162 
12 
1 

a2r 

- 1.1205451 
197164O 

+ 3533223 
- 0389725 

0269745 
+ 0032735 
+ 0009744 
- 0001096 
- 206 
+ 21 

+ 2 

+ 

+ 

+ 

1759094 
8056849 
3350780 
5167861 
9917782 
0051478 
2919474 
9214833 
3782833 
0172858 
8753088 
2646656 
283565 
23709 
2083 
159 
12 
1 



4 2 a.J. Hangelbroek 

r 

0 
i 

2 
3 

4 
5 

6 
7 
8 

9 
i0 
11 

12 
13 
14 
15 
16 
17 
18 

a3r 

+ ,0166129 

+ .0080271 

- .0003129 

- . 261 

+ 69 

- 6 

+ 

+ 

+ - 

+ 

+ 

7830452 

5445291 

8659925 
4348478 
8182019 
2323535 
5626289 

3348055 

673601 
47556 
19414 
9554 
2347 
273 
61 
48 
17 
4 

a4r 

3534565 
+ 0021736 
+ 0004429 

474 
+ i 

+ 8 
1 

§ 
+ 

§ 

+ 

+ 
§ 

+ 

6795162 

8937097 
5213449 
7464222 
9251930 
7130944 
7824386 
1339747 

340402 
162191 

35080 
2940 
1125 
650 

188 
31 
2 
4 
2 

For the convenience of the user we provide the following check sums, 

E' alr = + 0. 3284566 2486755, 
f.____ 

E' (-I) r alr = V ~  = + 1.7841241 1615277, 

~' a2r = - 0.4659414 9676626, 

E' (-i) ~ a2r = O, 

,E' a3r  : + 0 . 0 1 6 0 0 0 8  4 3 1 8 2 2 8 ,  

E '  ( - 1 )  r a s r  = O, 

E ~ a4r  = - 0 .  1 7 4 1 5 8 2  1 6 0 3 3 0 4 ,  

= - 1  = _ O. 1 7 8 4 1 2 4  1 1 6 1 5 2 8 .  
E '  ( - 1 ) r  a4 r  "~/ 107r 

2. Discussion of  the errors .  

There are three sources of errors for the final values of the Fresnel 
integrals, viz. 
(i) The Chebyshev series have been truncated. 
(ii) The coefficients in the Chebyshev series have been rounded to 14 

decimal places. N 
(iii) The method of evaluating E' a T (x) as given by Clenshaw [i], may 

r=0 r r 
introduce an additional error. 

Ad (i). The truncation in the Chebyshev series is due to the calculation 
of the coefficients a r . which implies the choice of a number I'4 and the as- 
sumption that aN+ 1 = aN+ 2 = ... = 0 (el. (i. 17) and (1.23)). Now we shall 

investigate the truncation errors for the two approximations. 
i. For the range 0<x<5 the original function u(z) satisfies the differential 

equation (i.ii). The approximation to this function u(z), called u N (z), 

satisfies the differential equation (cf. (1.12)) 

, u N  _~i ~ 25 - z u N + ~  -- 2e  E '  ( -1 )  r J ( ) T  ~ (z) .  ( 2 . 1 )  
r= 0 r 

The error r~N(z)=u(z)-UN(Z) will therefore satisfy the equation 
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~N ~ ~ (ilr~ (}I T;(zl (2.21 z~'N+ = 2 e  
2 r=N+l 

The latter differential equation can be integrated, which yields 

5. 
2e -~l z 

~ z / -  ~ (-i~ ~ :r/}/ f ~;lt/ _ _  dt. (2.2) 
A/" Z r=N+l 0 ~-t 

The error eN(X ) in the corresponding approximation (1.24) to the Fresnel 
integrals can be represented by 

eN(x) e E (-i) r Jr( ) dr. (2.4) 
r=N+l 

The r e p r e s e n t a t i o n  (2.4)  can be e s t i m a t e d  in the fo l lowing  m a n n e r .  When 
we substitute t=u 2, the integral in the right-hand side of (2.4) changes into 

x/5 T* 
dt = 2 j" T~(u2) du = 2 [ T2r (u) du (2.5) ) 

o V-t o o 

T2r+l (%/x/5) T2r_l ( k / x / 5 )  
= 

2 r +  1 2 r - 1  

according to [i], form. (ii) and (5). On the range 0<x<5 the integral 
(2.5) assumes a maximum or a minimum for 

(2k+ i) Ir 
x = x k = 5 cos 2 (k=0, 1 ..... r-l), 

4r 

the values x k being the zeros of the function Tr(x/5 ). The actual maxima 
and minima are given by 

T2r+1 (V-~kl5) T2r-1 (V~kls) k+1 4r 
- = (-1) sin (2k+ i) ~--- (2.6) 

2r+l 2r-i 4r 2- 1 4r " 

Hence we can  estimate 

~ 5 T* (t) 
dt < _ _  

o V - t  = 

4 r  

4 r 2 - 1  

cN(x) < \E ~ 4r j (~I (2 71 
----- V ~ r=N+l 4r 2-i r ' 

both valid for 0<x<5. As was mentioned in section 1 N has been taken 

equal to 17. By means of a computed table of the Bessel functions Jr (5) 

we found the following upper bound for the error c17 (x), 

I ~17(x) i< 0.85 x 10 -15 

This error is negligible in comparison with the errors due to (it) and (iii). 
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2. For the range x=>5 the original function u(z) satisfies the differential 
equation (1.20). Now we shall derive a differential equation for the ap- 
proximation to this function u(z), called u M (z). We denote the relations 
(I. 22) by 

F r = 0 ( r - -0 ,  1, 2 . . . .  ).  

Instead of these relations we solved 

F r  - Fr+ 1 = 0 ( r = 0 ,  1, 2 . . . . .  M) 

o r  

F r = ~- ( r - -0 ,  1, 2 . . . . .  M + I ) ,  ( 2 . 8 )  

where ~" is some constant. 
From (1.22) with r--M+l and (1.4) it follows that 

"r = aM_ 1 '  + 2 a M =  ( 4 M + 2 )  aM, ( 2 . 9 )  

as the higher order coefficients have been taken zero. Consequently the 
approximation u M (z) is a solution of the equation 

Z2U~+}ZUM+ 5 i U M =  5 + - -  
2 M + l  M+I 

a M E' T~r~ (z) .  ( 2 . 1 0 )  
8 r=0 

According to [i], form. (ii) and to [2], form. 10.11 (40) the sum in the 
right-hand side of (2. i0) can be written as 

M+I M§ 1 ( V Z )  , ( 2 . 1 t )  E' T~" (z) = E' T2r (V-z) = y U2M+2 
r=O r=O 

where U r denotes the Chebyshev polynomial of the second kind. The er- 
ror riM (z) -- u(z) - UM(Z ) will now satisfy the equation 

2 , 1 + 5 i r I M  = _ 2 M + l  
z tl M +-~z t ]  M ~ a M U 2 M+2 ( •z ) .  ( 2 . 1 2 )  

The latter differential equation can be integrated, which yields 

z 

rIM(Z) 2 M + l  eSffz / U2M+2 (V-t)  e -Si f t  
- - -  - -  d t .  (2.13) 

16 aM ~-z 0 t V-t 

The error e M (x) in the corresponding approximation (1.25) to the Fresnel 
integrals can be represented by 

1 2 M + 1 5/x e -s i / t  
Clv i (X) - - - - - - a  M f U2M+2 (~ft) dt. (2.14) 

16 0 t r 

On the range x_~5 the real and the imaginary part of the integral in the 
right-hand side of (2.14) will both assume a maximum or a minimum for 

k ~r (k=l,2, . , N[+I), (2.15) x - - x  k--  5 / c o s 2  2 M + 3  " " 
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the values x k being the zeros of the function U2M+2 (~/-5/x). Besides, the 
real and imaginary parts of the right-hand side of (2.14) will assume 
maxima and minima for values of x satisfying 

Re { a M e - i x  } : 0 and  I m  {a M e -ix} = 0 , (2.16) 

re spe ctively. 
As was mentioned in section i, M has been taken equal to 19, which 

leads to the following numerical value for a19 /~10~r, 

a19 
X/Z~ ~ : - (0.1171 + 0.5169 i) x 1 0  -14 (2.17) 

For x>200 the representation (2.14) can be estimated with the aid of an 
integration by parts. The result is 

[ e19(x ) ] < 0 , 2 5  • 10 -14 (2.18) 

For 5<x<200 the following bounds were obtained by numerical integration, 

3 9 5/x e -Silt i 
R e {  16 I~T-  ~ a19 I U4o (~-t) d r}  1 < 0 " 3 7 "  10 -14, ( 2 , 1 9 )  

51200 t ~/t 

I m  { 39 ]5/x -5i/t 
16 k/ 10----~ a19 U4~ (k/-t) e 

512oo t V-t 
d t }  I < 0 . 7 8  x 10 -14. 

Splitting the integral in the right-hand side of (2.14) into two parts 

5/x = f5/200+ 5/x 
0 0 5/200 

we obtain the following bounds for the errors Re { ~19 (x)} and Im{ el9(x ) } 
in the approximations to the Fresnel integrals for x~_5 from (2.18) and 
(2.19), 

I Re { q g ( x )  } I < ~  62 10 -14 

L Im { % ( x )  } I < 1 0 3  x 10-14. 

These errors are negligible in comparison with the errors due to (it) and 
( i i i ) .  

(it). Rounding the coefficients ar to 14 decimal places may lead to a 
rounding error of one unit in the 13 2 decimal digit in the calculation of 
N 
E '  a r T r (x).  
r=O 

( i i i ) .  I t  h a s  b e e n  s h o w n  by  C l e n s h a w  [ 1 ] ,  w  t h a t  t he  m e t h o d  of  
N 

e v a l u a t i o n  of  the  s e r i e s  E '  a r T  r (x) w i th  t he  a id  of  a r e c u r r e n t  r e l a t i o n  
r=0 

l e a d s  to  e r r o r s  w h i c h  a r e  of  the  s a m e  o r d e r  of  m a g n i t u d e  a s  t h o s e  u n d e r  
( i i ) .  

T h e  f i n a l  r e s u l t  i s  t h a t  w i th  the  d a t a  of  t h i s  p a p e r  the  F r e s n e l  i n t e g r a l s  
c a n  be  c a l c u l a t e d  a c c u r a t e  to  13 d e c i m a l  p l a c e s .  
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3. Properties of the solutions of the system (1.23). 

In s e c t i o n  1 we o b t a i n e d  the  r e c u r s i v e  s y s t e m  ( 1 . 2 3 ) .  T h e  g e n e r a l  s o l u t i o n  
of  t h i s  s y s t e m  is o f  the  t y p e  

a r = K r + C lA r + c 2 B r ( r : 0 ,  1, 2 . . . .  ), ( 3 .1 )  

w h e r e  K r is  a p a r t i c u l a r  s o l u t i o n  of  the  s y s t e m ;  A r and  B r a r e  l i n e a r l y  
i n d e p e n d e n t  s o l u t i o n s  of  the  s y s t e m  w h e n  the  r i g h t - h a n d  s i d e  of  the s e c o n d  
r e l a t i o n  is  t a k e n  z e r o  (the r e d u c e d  s y s t e m ) ,  c 1 and  c 2 a r e  a r b i t r a r y  c o n -  
s t a n t s .  

In  t h i s  s e c t i o n  it  w i l l  be s h o w n  tha t  o n l y  one  s o l u t i o n  a r of  the  r e c u r s i v e  

s y s t e m  ( 1 . 2 3 )  h a s  the  p r o p e r t y  t h a t  the  s e r i e s  r=~: a r T  ~ (z) c o n v e r g e s  to  a 

b o u n d e d  f u n c t i o n  t h r o u g h o u t  the  r a n g e  0_<z<_l. 
We k n o w  t h a t  the  c o e f f i c i e n t s  in the  C h e b y s h e v  s e r i e s  e x p a n s i o n  of  the  

f u n c t i o n  u ( 5 / z ) ,  a s  d e f i n e d  in ( 1 . 1 9 ) ,  c o n s t i t u t e  a s o h t i o n  of  the  r e c u r s i v e  
system. Let K r in (3. i) denote the r-th order coefficient in this expansion. 

Then we have to show that E' ArTr(Z ) and ~' BrT~(z ) cannot converge 
r=0 r=0 

to  a b o u n d e d  f u n c t i o n  t h r o u g h o u t  t he  r a n g e  0_<z_<l. 
A f o r m a l  a p p l i c a t i o n  o f  the  m e t h o d  d e s c r i b e d  in s e c t i o n  1 to the  r e d u c e d  

f o r m  of  the  d i f f e r e n t i a l  e q u a t i o n  ( 1 . 2 0 )  

z 2 du i ~zz + u (y z + 5 i) = 0 (3 .2 )  

yields the reduced recursive system. Therefore we investigate whether 
the Fourier-Chebyshev coefficients of the solution of (3.2) exist and satisfy 
the reduced system, th 

Formation of the r Fourier-Chebyshev coefficient of the solution u(z) 
= z-~ eSi/z (cf.(l.3)) yields a convergent integral. Substitution of these 
coefficients into the equations of the reduced system shows that they con- 
stitute a solution of that system. 

Let A r in (3.1) denote the r th order Fourier-Chebyshev coefficient of 

z -�89 e 5i/z. It has been proved by Braaksma that the series ~' ArT~(z ) 
r--0 

converges to z'�89 5i/zin any interval c<z<l with e>0 (cf.[3]). Consequently, 

I Ar  [ --~ 0 a s  r---*~,  (3 .3 )  

~0 T* bu t  the  s e r i e s  ' A (z) d o e s  n o t  c o n v e r g e  to  a b o u n d e d  f u n c t i o n  t h r o u g h o u t  

the r a n g e  0 < z < l .  
A n u m e r i c a l  s o l u t i o n  of  the  f i r s t  r e l a t i o n  of  ( 1 .23 )  f o r  r = l  up  to r ; 5 0  b y  

m e a n s  of  f o r w a r d  r e c u r r e n c e  wi th  s o m e  s t a r t i n g  v a l u e s  f o r  a 0 , a l , a 2  
p o i n t e d  t o  the  e x i s t e n c e  of  a s o l u t i o n  Pr  w i th  r a p i d l y  i n c r e a s i n g  a b s o l u t e  
v a l u e s  f o r  i n c r e a s i n g  v a l u e s  of  r up  to  r = 5 0 .  
Since the asymptotic form of the first relation of (1.23) as r-~o% i.e. 

a r-1 + 3at  +- 3a ~+1 + a r+2 = 0 , 

h a s  ( -1)  r ,  r ( - 1 )  r and r 2 ( - 1 )  r a s  l i n e a r l y  i n d e p e n d e n t  s o l u t i o n s ,  it is  
r e a s o n a b l e  to c o n c l u d e  t h a t  I P r  ] -~  0 a s  r---~0o. T h i s  m e a n s  t h a t  the  s o -  
l u t i o n  B r o f  the  r e d u c e d  r e c u r s i v e  s y s t e m  h a s  the  p r o p e r t y  ~hBer[ -r 0 
as  b e c a u s e  I I and 0 as  C o n s e q u e n t l y  s e r i e s  

~ '  B r T : ( z  ) w i l l  c e r t a i n l y  no t  c o n v e r g e  in the  r a n g e  0 < z < l .  
l:--0 
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4. The numerical solutions of the system (1.23). 

In the paragraph following the recursive system (1.23) we described a 
method, which has been applied in order to obtain a finite number of ac- 
curate values for a desired solution of the system. The correctness of 
the method depends on the behaviour of the linearly independent solutions 
of the third-order difference equation formed by the first relation of (1.23). 
In this section the results of a numerical investigation into the behaviour 
of the solutions of the difference equation will be given. The computations 
were performed on the Telefunken-TR4 computer of Groningen University 
in ii decimal digits. 

First the difference equation was solved numerically for r=l up to r=50 
by means of backward and forward recurrence with the three linearly in- 
dependent combinations of starting values 1,0,0;0, i,0;0,0, I for a5 O asl, 
a52 and a0, al,a2, respectively. The backward recurrence yielded'three 
sets of values for at, which after a normalization on a 0 -- 1 turned out 
to be identical in I0 significant figures for r--0, i, 2 ..... 25. The absolute 
values for a r in this range increased froml a25 I "~2.3 x 10-17 to la0 [ : i. 
The forward recurrence yielded three sets of values for a which after 
a normalization on a50 = 1 turned out to be identical in r{0 significant 
figures for r=25, 26, 27 ..... 52. The absolute values for a r in this range 
increased from Ia251 ~ 5.1 x i0 -n to l a501 = I. We may conclude that 
for r=0, i, 2 ..... 50 the difference equation has one rapidly decreasing and 
one rapidly increasing solution, each of them dominating in one of the 
directions of recurrence. 

Next the difference equation was extended to 

( 2 r - 1 ) a r _  1 + ( 6 r + 1 + 4 0 i )  a r + ( 6 r + 5 - 4 0 i )  ar+l + ( 2 r + 3 ) a r +  2 = 0 ( 4 . 1 )  

for all integer values of r. 
We remark that if ar constitutes a solution of the difference equation 

thus extended, b r = a r will also be a solution. This can be shown as fol- 
lows. 

Substitution of r=-r'-i in equation (4. I) yields 

( - 2 r ' - 3 ) a _ r , _ 2 + ( - 6 r  ' 5 + 4 0  i) a _ r , _ l +  ( - 6 r ' - 1 - 4 0  i) a , + ( - 2 r ' + l ) a _ r , + l = 0 .  

D e f i n i n g  b r , = a  r, th i s  l a s t  r e l a t i o n  b e c o m e s  

(2r'+3) br.+2+(6r'+5-40 i) br.+1+(6r'+l+ 40 i) b r, +(2r'-l)br._ I = 0 , 

which proves the statement. 
Equation (4. l) was solved numerically for r=50 up to r=-49 by means 

of backward recurrence with the starting conditions as0 =I, asl =a52 =0. The 
computed values for a r were normalized on a 0 -- 1 subsequently. The ab- 
solute values increased from I a25 I -- 2.3 • 10 -17 to la-50 I ~ 3.8 • 10 25. 
In a number of significant figures this set of values for a r was assumed 
to represent a solution of (4.1), the absolute values of which deerease 
rapidly for values of r increasing from r=-50 to r=+50. We shall denote 
this solution by the vector Yl and its elements by (Yl)r. Due to the sym- 
metry property of the difference equation the vector Y2, defined by (Y2}x 
--(Yl)-r, will be a solution, the absolute values of which increase rapidly. 
The linear combinations �89 + Y2) and i ~(Yl - Y2) will then constitute a 
symmetrical and an antisymmetrical solution with regard to r=0. 

Now we look for a third solution of (4.1)linearly independent of the 
solutions Yl and Y2" Substitution of a_r =a r in (4. i) yields 
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f (1+40 i) a o+ (4-40 i) a 1 + 3 a 2 = 0, 

( 2 r - 1 ) a r _ l  + ( 6 r + 1 + 4 0  i) a r + ( 6 r + 5 - 4 0  i) a t+ l+  ( 2 r + 3 ) a r + 2 =  0 

( r= l ,  2, 3 . . . .  ) . 

(4.2) 

The recursive system (4.2) has two linearly independent solutions. Both 
solutions will form symmetrical solutions of equation (4. i). Therefore we 
look for a second symmetrical solution of (4. i), say Y3, the absolute 
values of which increase at least less rapidly than the absolute values 
for �89 + Y2). 

E q u a t i o n  (4.1)  was  so lved  n u m e r i c a l l y  f o r  r=0 up to r=50 by m e a n s  of 
f o r w a r d  r e c u r r e n c e  with the s t a r t i n g  cond i t i ons  a 0 =0, a_l  =a 1 =1. B e c a u s e  of 
the s t a r t i n g  cond i t i ons  the se t  of v a l u e s  thus  c o m p u t e d  wil l  r e p r e s e n t  a 
b r a n c h  of  a s y m m e t r i c a l  so lu t ion  y~.  A p a r t  f r o m  a c o n s t a n t  f a c t o r  the 
v a l u e s  fo r  (Y3)r b e c a m e  iden t i ca l  in 10 s i g n i f i c a n t  f i g u r e s  with the v a l u e s  
fo r  �89 fo r  r in the n e i g h b o u r h o o d  of r=50 as  was  to be e x p e c t e d ,  
s ince  both s o l u t i o n s  wil l  have  the m o s t  r a p i d l y  i n c r e a s i n g  so lu t ion  as a 
c o m p o n e n t .  We m a y  expec t  tha t  a l i n e a r  c o m b i n a t i o n  of y~ and �89 
wil l  i n c r e a s e  l e s s  r a p i d l y .  

Deno t ing  the c o m p u t e d  v a l u e s  fo r  1 ~(yl+Y2) 50 and (Y3)50 by p and q, 
respectively, we may expect that the values for 

,, , _ q I 

Y3 = Y3 ~- " -~ (Yl + Y2) (4.3)  

wil l  c o i n c i d e  with the v a l u e s  fo r  the d e s i r e d  so lu t ion  Y3 in a n u m b e r  of 
s i g n i f i c a n t  f i g u r e s  f o r  r in the n e i g h b o u r h o o d  of r=0 .  
The v a l u e s  f o r  y~' w e r e  c o m p u t e d  by m e a n s  of f o r w a r d  r e c u r r e n c e  with 
the s t a r t i n g  c o n d i t i o n s  a0=(y~')0, a_l  = a+l = (Y~)I d e r i v e d  f r o m  (4 .3) .  
The c o m p u t a t i o n s  y i e lded  a s e t  of v a l u e s  f o r  y'~ with a b s o l u t e  v a l u e s  
d e c r e a s i n g  f r o m  r=0 to r = l l  and i n c r e a s i n g  fo r  r > l l .  The va lue s  fo r  

~T (Y3)5o 
IT 

(Y 3)49 
and 

(Y1+Y2)50 

(Yl+Y2)49 

were identical again m i0 significant 

figures, which means that the most rapidly increasing solution had entered 
in the computations by rounding errors during the process of recurrence. 
Therefore we repeated the computations by means of forward recurrence, 
now s ta r t ing  wi th  the condit ions a 9 (Y~')9, alo (Y3)10, a l l  ~3 )11, 
w h e r e  

TI - q! 1 Y~' = Y3 %-" ~(Yl + Y2) 

and q '  d e n o t e s  the c o m p u t e d  va lue  fo r  (Y'3)50- Thus  we obta ined  v a l u e s  fo r  
Y3 c o r r e c t  in at  l e a s t  3 s i g n i f i c a n t  f i g u r e s  fo r  r=0 to r=28.  T h e s e  v a l u e s  
a r e  g iven  in Tab le  2. F o r  r > 2 9  the abso lu t e  v a l u e s  began  to i n c r e a s e  
aga in .  

The s y s t e m  (4.2)  is i d e n t i c a l  with the r e d u c e d  f o r m  of the r e c u r s i v e  
s y s t e m  (1 .23) .  T h e r e f o r e  the so lu t i ons  of (4.2)  a r e  l i n e a r  c o m b i n a t i o n s  of 
the solutions A r and B r introduced in section 3. A r has been defined by 

I T[(z) 
2 f z-�89 e5iz-1 _ _  dz (r=0, 1 2 ). (4.4)  

A~ :7o ~/z_z2  . . . . .  

Apart from the property IBr I-A~0 as r--~, the solution Br has not been 
defined. The computations described in this section pointed to the existence 
of a solution of (4.2) with rapidly increasing absolute values for r=0 up to 
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r=50. We denote this latter solution by B r now. The values for Y3 were 
computed by means of a proceeding reduction of the component B r in the 
solutionsy~ and y~. Consequently, apart from a constant factor, the solution 

Y3 for r>0 can be identified with the solution A r. 

Conc[z~sion. We have found that one of the solutions of the difference 
equation, formed by the first relation of (i. 23), has rapidly increasing ab- 
solute values and consequently dominates in the process of forward recur- 
rence. A second solution has rapidly decreasing absolute valu,'s and there- 
fore dominates in the process of backward recurrence. The values of a 
third independent solution have been given in Table 2. This solution has 
been identified with A r (4.4), apart from a constant factor. Since the coef- 
ficients K in the Chebyshev series expansion for the function u(5/z), defined 
in (l.19),rconstitute a solution of the difference equation and cannot have a 
component A r (cf. section 3), we can identify the second solution with Kr. 
Consequently, we may conclude that the absolute value of an error intro- 
duced in any step of the computation, either by the choice of the starting 
conditions or by rounding errors, can increase during the process of back- 
ward recurrence at most in the same .manner as I Kr I. The method, ap- 
plied in section i, of repeating the process of backward recurrence for in- 
creasing starting values M of r till the computed values a t remain constant 
in a desired number of significant figures may be considered correct there- 
fore. 

TABLE 2. Computed values for a r = (Y3)r ( r>0) .  

l at I- 102 arg a~ r l a~l. 102 arg a r 

0 4.92 1.57 15 2.13 1.38 

1 4.70 1.39 16 2.08 5.89 
2 4.24 0.88 17 2.03 4.08 
3 3.80 0.09 18 1.99 2.2g 

4 3.46 5.38 19 1.95 0.40 
5 3.20 4.25 20 1.91 4.81 
6 3.00 3.00 21 1.88 2.91 
7 2.83 1.65 22 1.85 0.99 
8 2.69 0.23 23 1.82 5.34 
9 2.58 5.02 24 1.79 3.39 

I0 2.48 3.48 25 1.76 1.42 
11 2.39 1.88 26 1.74 5.73 
12 2.32 0.24 27 1.72 3.73 
13 2.25 4.85 28 1.71 1.70 
14 2.19 3.13 
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