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Introduction

In this paper a method for computing the Fresnel integrals over the
whole range from 0 fo e« with an accuracy of thirteen decimal places is
presented. In section 1 approximations to the integrals are derived in the
form of finite series of Chebyshev polynomials, wvalid in the subranges
0=x =5 and x = 5, The coefficients in these approximations have been
computed with the aid of a method given by Clenshaw [1]. This method
leads to a difference equation from which the coefficients are to be cal-
culated, Section 2 contains an investigation into the errors of the present
approximations, In the sections 3 and 4 the third-order difference equation
which occurs in the case x Z 5 has been investigated. In particular it is
shown that the solution which was obtained in section 1 really corresponds
to the Chebyshev coefficients of the Fresnel integrals.

1. Derivation of the approximalions
First we quote the following definitions, notations and properties related

to the shifted Chebyshev polynomials from Clenshaw [1], with some modifi-
cations.

Every function f(x) which is continuous and of bounded variation in 0 = x £1
can be expanded in a uniformly convergent series
f(x) = $a, + 2;TH(x) + apT§(x) + ... = L' a,TH(x) (1.1)

=0

where T(x) stands for the shifted r™ Chebyshev polynomial defined by

TH(x) = cosre; 2x -1 = cos ¢ for 0 £ x =1, (1.2)
The prime on the summation symbol in (1.1) and elsewhere in this paper
denotes that the term with suffix r = 0 is to be halved.

The orthogonal property of integration of the Chebyshev polynomials gives
rise to the following representation of the coefficient a, in (1.1),

1 T, (x)
a; = = f(x)
pt X=X

dx (r=0,1,2,...), (1. 3)

the so-called r® Fourier-Chebyshev coefficient of the function f(x)).

The r™ Fourier-Chebyshev coefficient of the s™ derivative, £ (x), of
a- function f(x) is denoted by a(rs) . By means of an integration by parts,
one can derive the relation

(s) _ +1 (s+1)
4rarS - aﬁ-ll) - am (1.4)

under the conditions
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9 (x) = o (x-}) ag x — 0,

) (x) = o ((1-x)%) as x > L.

Let the r™ Fourier-Chebyshev coefficient of the function xPf{)(x) be
denoted by C,(xPf(s)), then one can easily derive that

C (xf@) =4 (aﬁ{ll +2a + 20 (1.5)

and hence

Pe(s)y = o-2p 5« [ 2P\ (9 =0.1 1
C,u®) =2 E (Ve =012, (1.6)

under no other conditions than the existence of the occurring coefficients.

In this paper the Fresnel integrals are defined by

X cos t
Clx) = [—=dt,
0o Vart

¥gin t

0 V27t

(L.7)

dt.

S({x) =

Approximations in the form of finite Chebyshev series expansions will
be derived for the following function,
X @ ~it
t(x) = [

o V2rt

dt = C(x) - iS (x) . (1,8)

Two different expansions will be obtained, wvalid for the ranges 0<x<5 and
x25, respectively,

At first we construct the approximation for 0<x<5. If we expand the
function eit, a term by term integration of (1.8) leads to the following
expansion for the function f(x),

r) = VE G (1.9)

27 =0 rl(r+i)

Now we introduce a function u(x) defined by
f(x) = \/2—X7ru(x) . (1.10)

Inspection of (1.8) shows that the function u(x) is more suited to approxi-
mation by polynomials.

Differentiation of (1.10) and subsequent substitution of x=bz yield the fol-
lowing differential equation for u as a function of z,

+3 =ediz (0gzgl). (1.11)

6]

The right-hand side of (1.11) can be expanded in a Chebyshev series,
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. 5. 5; B o
e-Siz= o 9i(22-1)e~5 = 72 | 2 EO' (-1)" I, (3) T (2), (1.12)
r:

where J, denotes the Bessel function of the first kind. Relation (1.12) can
easily be deduced from the expansion

el2¢99= 2L i1 (a) cos r g, ([2], form.7.2 (27)).
r:

Hence we obtain the following relation between Fourier-Chebyshev coef-
ficients,

Clew) +3C,w =2 (1 K (r=0,1,2,...). (1.13)

When we use (1.5), the relation (1.13) becomes

5.
ajpq t2ap+t al,;t2a,=8 e 2! (-1)f Jr(g). (1.14)

The latter relation combined with (1.4) will be used for the computation
of the coefficients a,of the truncated Chebyshev series expansions for u(z).
We eliminate the coefficients a} by first subtracting the relation (1.14) with
r replaced by r+l from the original relation (1.14). This leads to

' B, :
aqr-1) taj - a.r+1' a'r+2+ 2a,-2ay;=8e 2 (_1)r {Jr(%) +1 Jr+1(%)}' (1.15)

Using (1.4) we can eliminate the coefficients a', and we obtain the following
difference equation for the coefficients a;,

22 r
42 (<)) {1 Q) +i T )
aptap; = N ’ (1.16)
r

Since the Chebyshev series formed with the coefficients a; should con-
verge, equation (1,16) must be solved with the boundary condition

lim a,=0. (1.17)

I
I—> o

If the calculation is performed in 14 decimal places, it appears that the
right-hand side of equation (1.16) vanishes in this accuracy for r>18, This
means that all coefficients a, with r>18 can be taken as zero. Then the
coefficients for rgN=17 can be calculated from equation (1,16) directly.

The. stability of the procedure is satisfactory since an error in one of
the coefficients a; is transferred with equal absolute value to all coeffi-
cients with smaller r. However, the solution obtained increases rapidly
with smaller r.

Secondly we construct the polynomial approximation for x>5, It can be
derived, that -

e 1-1
dt = —.

V2rt 2

By means of repeated integration by parts, we derive

£ (o) = f
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o emit ~ie~It w» T(3+r) i
At~ E—— &, (1.18)
x Vart V27x =0 T(3)

The asymptotic approximation (1,18) shows that the function f(x) is not suited
to approximation by polynomials in x~1, Therefore, we introduce a function
u(x), defined by

1-i e=ix

f{x) = — - u (x)
2 V2rx
or
' o @-it
u(x) = elXV_xf dt . (1,19)
x Vi

Differentiation of (1.19) and subsequent substitution of x=5/z yield the fol-
lowing differential equation for u as a function of z,

22y k2450 =5 (0

dz z

A
HA

1). (1.20)

From (1.20) we obtain the following relations between Fourier-Chebyshev
coefficients,

i}

C(z°u) +3C (zu)+5iC (w) =0 (r=l,2,...),

(1.21)

co(z2u') +% Cy(zu) + 51 Cy(u) =10 (r=0).

When we use (1.8), the relations (1.21) become

Loy T4al

+ "+ 4 3’
a|r—2| 6 a; r+

tal ,t2a ,+4at2a ,+80ia =0
(r=1,2,...), (1.22)

6aj +8 ai + 2a’2+4al+4 a,t80ia =160 (r=0).

1 1 2

We subtract the relations (1.22) with r replaced by r+l from the original
relations (1.22) and use (1.4), in order to eliminate the coefficients al.
The result is

(2r-1)a _, +(6r+1+40i)a + (6r+5-40i) a, +(2r+3)a,,,=0
(r=1,2...), (1.23)

(1+40i)a +(4-40i)a, + 3 a = 80 (r=0),

1
Equation (1.23) for r>1 is a third-order difference equation. Two boun-
dary conditions are available, viz. equation (1.23) for r=0 and condition
(1.17). This, however, is not sufficient to determine the solution uniquely.
One solution has been obtained in the following way.
For a sufficiently large integer M we assume

=a =... =0,

ay =1 M+2

M > BMel
Then the coefficients a; for r<M can be solved from esquation (1.23) for
r=M, M-1,...,1. Equation (1.23) for r=0 acts as a normalizing relation,
by means of which final values for all coefficients can be obtained., It was
found that for increasing M the values of the coefficients a, converge.
For M>»19 these coefficients are obtained with an accuracy of fourteen
decimal places. It appears that a;4 vanishes in this accuracy so that only
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the coefficients a;(r=0,1,...,N) with N=18 are of importance.

In section 3 and 4 an investigation of the solutions of equation (1,23)
has been carried out. In particular, it is shown there that the coefficients
obtained above correspond to the coefficients of the Chebyshev series ex-
pansion of the function u(x) as defined by relation (1.19),

Thus we have obtained the following approximations,

X NI X .
fx) a\/o— T a, T (&) valid for 0<x<5 (1.24)
27y TT0 = =
and
1-i e™ X 5y 1
f(x)~» == - L' a_ T¢ (<) valid for x> 5. (1.25)
2 aax o T 2

Actually, the coefficients a, in (1,24) and (1.25) have been multiplied by
\/—25; and —\/l_lT_n’ respectively, in order to obtain the approximations

% N, . X
f(x)~ 3 r;Eo @, +ia, )Ty (—5-) for 0<x<5 (1.26)
and
P e SR e )T () g
X)~ 5 - e : L ag +1a,)T; (5(- or xz5. (1,27)

The computations of the coefficients aj, in the approximations (1.26)
and (l.27) have been performed on the digital computer ZEBRA operating
with numbers of 16 decimal digits (the so-called 13 length numbers). In
this paper the computed coefficients are given in 14 decimal places in
Table 1. The inaccuracy of thege cocefficients will be one unit of the last
decimal at most,

TABLE 1
r alr agr
0 + 2.0317861 9253011 - 1.1206451 1759094
1 - .8319294 4359172 = . 1971640 8056849
2 + .0530351 6304029 + .3533223 33560780
3 + .1094828 9102595 - .0389725 5167861
4 - .0132731 4036389 ~ .0269745 9917182
] -~ .0055349 7821362 + .0032735 00514178
6 + .0006511 1454310 + .0009744 2919414
7 + .0001503 0914539 ~ .0001096 9214833
8 - . 161 0750990 - 206 3782833
9 - 25 5346638 + 21 0172858
10 + 2 4711976 + 2 8753088
11 + 2970767 - . 2646656
12 -~ 260422 - - 283565
13 - 25152 + 231709
14 + 2009 + . 2083
15 + 162 - . 159
16 - 12 - . 12
17 - 1 + . 1
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L agr ayr

0 + .0166129 7830452 - .356345656 6795162
1 + ,0080271 5445291 + ,0021736 8937097
2 - ,0003129 8659925 + ,0004429 5213449
3 - . 261 4348478 - . 474 7464222
4 + . 69 8182019 + . 1 9251930
5] - 8 2323538 + . 8 7130944
6 - 5626289 - 1 7824386
7 + . 3348055 + . 1339747
8 - . 673601 + . 340402
9 + . 47556 - . 162191
10 + - 19414 + ., 35080
1 - . 9554 - . 2940
12 + . 2347 - 1125
13 - 273 + . 650
14 - 61 - 188
15 + 48 + . 31
16 17 + . 2
17 + 4 - 4
18 + . 2

For the convenience of the user we provide the following check sums,

L'a, =+0,3284566 2486755,
I (-1)a, =\/17TE= +1.7841241 1615277,

L'a, = -0,4659414 9676626,

L' (-1)f a, =0,

z’ a, =+ 0.0160008 4318228,

' (-1)"a, =0,

T
! a, = -0.1741582 1603304,
-1

V 107

2. Discussion of the evvors.

There are three sources of errors for the final values of the Fresnel

integrals, viz.

(i) The Chebyshev series have been truncated,

(ii) The coefficients in the Chebyshev series have been rounded to 14
decimal places.

(iii) The method of evaluating
introduce an additional error,

Ad(i). The truncation in the Chebyshev series is due to the calculation
of the coefficients a,. which implies the choice of a number N and the as-
sumption that ay,; =ayg = -« =0 (cf.(1.17) and (1.23)). Now we shall
investigate the truncation errors for the two approximations,

1. For the range 0<x <5 the original function u(z) satisfies the differential
equation (1,11). The approximation to this function u(z), called uy (z),
satisfies the differential equation (cf. (1.12))

' uy _ _gi N' I 5., = (2.1
zuN+—2—~2e rEO (-1) Jr(f)Tr(Z)' .1)
The error ny(z)=u(z)-uy(z) will therefore satisfy the equation

ot (-1)a, = = -0,1784124 1161528,

N
r arTr (x) as given by Clenshaw [1], may

=0
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NESLIPOS B (1) T D) T (2) (2.2)
z —=2e -i = z). .
N r=N+1 A

The latter differential equation can be integrated, which yields

5,
2e¢ 2! . z T° (1)
I 5 r -
ny(2) = SRR ) at. 2.2)
N V z 1=N+1 P2 of Vit

The error €y(x) in the corresponding approximation {1.24) to the Fresnel
integrals can be represented by

10 _f_)‘ oo 5 X/5T;(t)
eg&x) = —e gl r=1)\1:+1(-i)r Jr(g)of Vi dt. (2.4)

The representation (2.4) can be estimated in the following manner, When
we substitute t=u?, the integral in the right-hand side of (2.4) changes into

x/5 T (1) IX/S , fx/s
L—dt =2 T  (u?) du = 2 T, (u) d (2.5
o"’ V't 0 () du 0 o ! )
Ty (v x/5) Ty y (V %/5)
2r+1 2r -1 ’

according to [1], form. (11) and (5). On the range 0<x<5 the integral
(2.5) assumes a maximum or a minimum for -

2k+1) 7
x =%, 75 cog? —— (k=0,1,...,r-1),
4r

the values x, being the zeros of the function T:(x/5). The actual maxima
and minima are given by

Toms VX /D) Ty Vix, /5) S S T
- = (-1) sin (2k+1) £ . (2.6)
2r+1 2r-1 4r2-1 r
Hence we cén estimate
/5 T (1) 4r
[ ot £
0 Vit 4r2-1
NORERAVA: 3G, (2.7)
=N+l  4r1r2-1

both valid for 0<£x<5. As was mentioned in section 1 N has been taken
equal to 17. By means of a computed table of the Bessel functions J; (g)
we found the following upper bound for the error €17 (%),

| E17(X) ‘< 0.85 x 10-15.

This error is negligible in comparison with the errors due to (ii) and (iii).
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2. For the range x>5 the original function u(z) satisfies the differential
equation (1.20). Now we shall derive a differential equation for the ap-
proximation to this function u(z), called uy(z). We denote the relations
(1.22) by

F =0 (r=0,1,2,...).

I

Instead of these relations we solved
F, - F =0 (r=0,1,2,...,M)
or
F.=7 (r=0,1,2,...,M+1), (2.8)

where 7T is some constant. A
From (1.22) with r=M+1 and (1.4) it follows that

T =a!

Lo 2a,= (AM+2) ay, (2.9)

as the higher order coefficients have been taken zero, Consequently the
approximation u, (z) is a solution of the equation

M+1
zzul'vl+%zuM+ 51uM=5+iMaM rE(; T* (2). (2.10)
8 -

According to | 1], form. (11) and to [ 2], form.10.11 (40) the sum in the
right-hand side of (2.10) can be written as

M+l . M+'l _
IE(; T# (z) = r T, (Vz) =% Uy, ,(Vz), (2.11)

where U, denotes the Chebyshev polynomial of the second kind. The er-
ror Ny (z) = u(z) - uy(z) will now satisfy the equation

1 ip = o2M+1l
+2an+51nM 16 2y U2M+2(Vz). (2.12)

2t

z°n ),
The latter differential equation can be integrated, which yields
-51/t

tVt

2M+1 edi/z

My (2) = - S ay S Oj Uy ppee (V1) S

dt. (2.13)

The error €y (x) in the corresponding approximation (1.25) to the Fresnel
integrals can be represented by

1 5/x -5i/t
2M+1
a f Uymsz (V1) =

M
vViox 16 0 t VvVt

On the range x>5 the real and the imaginary part of the integral in the
right-hand side of (2.14) will both assume a maximum or a minimum for

dt. (2.14)

ey (x) =

x =x, =5 / cos? gtz (k=1,2,..., M+1), (2.15)
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the values x, being the zeros of the function Uy, (V 5/x). Besides, the
real and imaginary parts of the right-hand side of (2.14) will assume
maxima and minima for values of x satisfying

Re {ae-*} =0and Im {a, e*} =0, (2.18)
respectively,

As was mentioned in section 1, M has been taken equal to 19, which
leads to the following numerical value for a;q /V 107,

ajg

V10w

For x»200 the representation (2.14) can be estimated with the aid of an
integration by parts, The result is

= -(0.1171 + 0,5169 i)x10°14 (2.17)

l €19(x) | €0.25 x 10714 | (2.18)

For 5<x<200 the following bounds were obtained by numerical integration,

39 5/x oS/t
l Re{ > _a, J Uy, (V1) dt} [<0.37 x 10714, (2.19)
16 V107 5/200 tVt
5/x =5i/t
' mf —32 4, J UV S—adt} |<0.78 x 10714,
6V 107 5/200 t

Splitting the integral in the right-hand side of (2.14) into two parts

5/x 5/200 5/x

=J o)

0 5/200

we obtain the following bounds for the errors Re { €4(x)} and Im [e;q(x)}
in the approximations to the Fresnel integrals for x>5 from (2.18) and
(2.19), -

| Re { e19(x) } | <0.62 x 1074

| Im {e€4(x) } | <1.03 x 1014
These errors are negligible in comparison with the errors due to (ii) and
(iii).

(ii). Rounding the coefficients a, to 14 decimal places may lead to a
rounding error of one unit in the 13® decimal digit in the calculation of
N
EO' ap Ty (%).
r=|

(iii). It has been shown by Clenshaw [1], §5.1, that the method. of
evaluation of the series EO' a, T, (x) with the aid of a recurrent relation

=
leads to errors which are of the same order of magnitude as those under
(ii).

The final result is that with the data of this paper the Fresnel integrals

can be calculated accurate to 13 decimal places.
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3. Properties of the solutions of the system (1.23).

In section 1 we obtained the recursive system (1.23). The general solution
of this system is of the type

ar=K1‘+ClAI+C2BF (r=01112:--0).| (3 1)

where K, is a particular solution of the system; A, and B, are linearly
independent solutions of the system when the right~hand side of the second
relation is taken zero (the reduced system), c; and c, are arbitrary con-
stants.,

In this section it will be shown that only one solution a, of the recursive

system (1.23) has the property that the series r;Eo'arT: (z) converges to a

bounded function throughout the range 0<z<l1,

We know that the coefficients in the Chebyshev series expansion of the
function u(5/z), as defined in (1,19), constitute a solution of the recursive
system. Let K, in (3.1) denote the r-th order coefficient in this expansion.
Then we have to show that L' AIT;(Z) and rEo' BIT;(Z) cannot converge

. N I=0 =
to a bounded function throughout the range 0gz<l.

A formal application of the method described in section 1 to the reduced
form of the differential equation (1.20)

2 du .
za+u(%z+51)—0 (3.2)

yields the reduced recursive system, Therefore we investigate whether
the Fourier-Chebyshev coefficients of the solution of (3.2) exist and satisfy
the reduced system. c

Formation of the r  Fourier-Chebyshev coefficient of the solution u(z)
= g7t e51/z (cf,(1l.3)) yields a convergent integral., Substitution of these
coefficients into the equations of the reduced system shows that they con-
stitute a solution of that system.

Let A; in (3.1) denote the r order Fourier-Chebyshev coefficient of

2% e3/2 | It has been proved by Braaksma that the series Eo' A T; (z)
=

converges to z 252 in any interval egz <1 with €>0 (cf. [3]). Cor—lsequently,

I Arl — 0 as r—oo, : (3.3)

but the series r}:.“,:)‘ AIT: (z) does not converge to a bounded function throughout

the range 0<zg<1,

A numerical solution of the first relation of (1.23) for r=1 up to r=50 by
means of forward recurrence with some starting values for agp,a;,ag
pointed to the existence of a solution P, with rapidly increasing absolute
values for increasing values of r up to r=50.

Since the asymptotic form of the first relation of (1.23) as r—»em, i.e,

ar_1+ 38‘[ + 3ar+1+ ar+2 =0 5

has (-1)', r(-1)" and r?(-1)" as linearly independent solutions, it is
reasonable to conclude that |P;| 4> 0 as r—w., This means that the so-
lution B, of the reduced recursive system has the property |B,| +#» 0
as r-—s&, because |_Ar ‘ and |Kr‘ — 0 as r—w. Consequently the series

E' BrT: (z) will certainly not converge in the range 0<zgl.
=0
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4. The numevical solutions of the system (1.23).

In the paragraph following the recursive system (1.23) we described a
method, which has been applied in order to obtain a finite number of ac-
curate values for a desired solution of the system. The correctness of
the method depends on the behaviour of the linearly independent solutions
of the third-order difference equation formed by the first relation of (1.23).
In this section the results of a numerical investigation into the behaviour
of the solutions of the difference equation will be given. The computations
were performed on the Telefunken-TR4 computer of Groningen University
in 11 decimal digits.

First the difference equation was solved numerically for r=1 up to r=50
by means of backward and forward recurrence with the three linearly in-
dependent combinations of starting values 1,0,0;0,1,0;0,0,1 for 859, as,
ase and ay,a;,ay, respectively. The backward recurrence yielded three

sets of values for a;, which after a normalization on a; = 1 turned out
to be identical in 10 significant figures for r=0,1,2,...,25, The absolute
values for a; in this range increased from | ags | =2.3 x 10~17 to |ay| = 1,
The forward recurrence yielded three sets of values for a , which after
a normalization on ag, = 1 turned out to be identical in 10 significant
figures for r=25,26,27,...,52. The absolute values for a, in this range
increased from |ags| ~ 5.1 x 1071 to |agz | = 1. We may conclude that

for r=0,1,2,...,50 the difference equation has one rapidly decreasing and
one rapidly increasing solution, each of them dominating in one of the
directions of recurrence.
Next the difference equation was extended to
(2r-l)a,

+ (6r+1+40i) a + (6r+5-401i) a ,+ (2r+3)a ,, =0 (4.1)

-1 I+

for all integer values of r.

We remark that if a; constitutes a solution of the difference equation
thus extended, b, =a_  will also be a solution. This can be shown as fol-
lows.

Substitution of r=-r'-1 in equation (4.1) yields

(-2r'-8)a_._,+(-617-5+40 i)a_, | + (-61'-1-40 i)a_+(-21'+1)a 0.

' 417

Defining b ,=a_;, this last relation becomes
(2r'+3) b o+ (6r'+5-40 )b,y +(6r'+1+40 )b, +(2r'-1)by_3 =0,

which proves the statement.

Equation (4.1) was solved numerically for r=50 up to r=-49 by means
of backward recurrence with the starting conditions ag; =1, ag; =ag, =0. The
computed values for a, were normalized on a; = 1 subsequently. The ab-
solute values increased from| a,, | = 2.3 x 10-17 to ]a_50| ~ 3.8 x 1025,
In a number of significant figures this set of values for a, was assumed
to represent a solution of (4.1), the absolute values of which decrease
rapidly for values of r increasing from r=-50 to r=+50, We shall denote
this solution by the vector y; and its elements by (y;);. Due to the sym-
metry property of the difference equation the vector yo, defined by (yo);
= (y1) 4, will be a solution, the absolute values of which increase rapidly.
The linear combinations 3(y; + ¥g) and 3(y; - ¥yg) will then constitute a
symmetrical and an antisymmetrical solution with regard to r=0.

Now we look for a third solution of (4.1) linearly independent of the

solutions y,; and y,. Substitution of a_, =a  in (4.1) yields
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(1+40 i) a + (4-40 i) a +3a, = 0, (4.2)

(2r-1)a,_ + (6r+1+40 i) a, + (6r+5-40 i) a_, + (2r+3)a ,,=0
(r=1,2,3,...).

The recursive system (4.2) has two linearly independent solutions. Both
solutions will form symmetrical solutions of equation (4.1). Therefore we
look for a second symmetrical solution of (4.1), say ¥3, the absolute
values of which increase at least less rapidly than the absolute values
for 3(y1+ ya).

Equation (4.1) was solved numerically for r=0 up to r=50 by means of
forward recurrence with the starting conditions ay=0,a_;=a;=1. Because of
the starting conditions the set of values thus computed will represent a
branch of a symmetrical solution yj. Apart from a constant factor the
values for (y;), became identical in 10 significant figures with the values
for 3(y1+yg): for r in the neighbourhood of r=50 as was to be expected,
since both solutions will have the most rapidly increasing solution as a
component. We may expect that a linear combination of y} and %(yl+y2)
will increase less rapidly.

Denoting the computed values for %(y1+y2)50 and (y'3)50 by p and gq,
respectively, we may expect that the values for

Yy =¥y cme Bt ¥ (4.3)

will coincide with the values for the desired solution y, in a number of
significant figures for r in the neighbourhood of r=0,

The values for y; were computed by means of forward recurrence with
the starting conditions ag=(y5)o, a_; = as;; = (y3)1 derived from (4. 3).
The computations yielded a set of values for y, with absolute values
decreasing from r=0 to r=11 and increasing for r>11l, The values for

(y')

3°50 (y1+y2)50

and were identical again in 10 significant
(A1

(¥ 3)g (y1+2) 49

figures, which means that the most rapidly increasing solution had entered
in the computations by rounding errors during the process of recurrence.
Therefore we repeated the computations by means of forward recurrence,
now starting with the conditions ag = (y¥)g, 210 = (y§)10» 2117 (¥5 )11+
where

1
Vit ¥y -5 - E0y + ¥

and q' denotes the cdmputed value for (y4)so. Thus we obtained values for
Y5 correct in at least 3 significant figures for r=0 to r=28. These values
are given in Table 2, For r>29 the absolute values began to increase
again.

The system (4.2) is identical with the reduced form of the recursive
system (1.23), Therefore the solutions of (4.2) are linear combinations of
the' solutions A, and B, introduced in section 3. A, has been defined by

L1 Ti(2z)
V z-2*
Apart from the property ]Br |+>0 as r— o, the solution B, has not been

defined. The computations described in this section pointed to the existence
of a solution of (4.2) with rapidly increasing absolute values for r=0 up to

1
_ 2 -3 5 _
A —?of z%e dz (r=0,1,2,...). (4.4)
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r=50. Weé denote this latter solution by B; now. The values for y, were
computed by means of a proceeding reduction of the component B, in the
solutionsy} and y5. Consequently, apart from a constant factor, the solution
y, for r20 can be identified with the solution A .

Conclusion. We have found that one of the solutions of the difference
equation, formed by the first relation of (1.23), has rapidly increasing ab-
solute values and consequently dominates in the process of forward recur-
rence. A second solution has rapidly decreasing absolute valu:s and there-
fore dominates in the process of backward recurrence. The values of a
third independent solution have been given in Table 2, This solution has
been identified with A, (4.4), apart from a constant factor. Since the coef-
ficients Kr in the Chebyshev series expansion for the function u(5/z), defined
in {1.19), constitute a solution of the difference equation and cannot have a
component A, (cf. section 3), we can identify the second solution with K;.
Consequently, we may conclude that the absolute value of an error intro-
duced in any step of the computation, either by the choice of the starting
conditions or by rounding errors, can increase during the process of back-
ward recurrence at most in the same .manner as [K,|. The method, ap-
plied in section 1, of repeating the process of backward recurrence for in-
creasing starting values M of r till the computed values a, remain constant
in a desired number of significant figures may be considered correct there-
fore.

TABLE 2. Computed values for a; = (yg)r (r>0).

r |2 |. 102 arg a, r [ar|. 102 arg a;
0 4.92 1,57 15 2.13 1.38
1 4.70 1.39 16 2.08 5.89
2 4.24 0.88 17 2.03 4.08
3 3.80 0.09 18 1.99 2.25
4 3.46 5.38 19 1.95 0.40
5 3.20 4.25 20 1.91 4.81
6 3.00 3.00 21 1.88 2.91
7 2.83 1.65 22 1.85 0.99
8 2.69 0.23 23 1.82 5,34
9 2.58 5.02 24 1.179 3.39

10 2,48 3.48 25 1.76 1.42

11 2.39 1.88 26 1.74 5.73

12 2.32 0.24 27 1.72 3.73

13 2.25 4.85 28 1.71 1.70

14 2.19 3.13
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